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Self-organized network of fractal-shaped components coupled through statistical interaction
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A dissipative dynamics is introduced to generate self-organized networks of interacting objects, which we
call coupled-fractal networks. The growth model is constructed based on a growth hypothesis in which the
growth rate of each object is a product of the probability of receiving source materials from faraway and the
probability of receiving adhesives from other grown objects, where each object grows to be a random fractal
if isolated, but connects with others if glued. The network is governed by the statistical interaction between
fractal-shaped components, which can only be identified in a statistical manner over ensembles. This interac-
tion is investigated using the degree of correlation between fractal-shaped components, enabling us to deter-
mine whether it is attractive or repulsive.
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I. INTRODUCTION

Self-organizing phenomena are now recognized as c
plex systems in which nonlinearity plays a significant ro
such as pattern formation in physical, chemical, and biolo
cal systems@1–6#. The phrase ‘‘self organization’’ is used i
various contexts, one of which is the notion of ‘‘hands-of
production. This kind of self-organization phenomenon p
ceeds free of our intervention, resulting in striking patter
This notion is theoretically described by automata, i.e.,
namic systems, possibly with random processes@7–9#.

We recall self-assembled quantum dots of compou
semiconductors, in which InGaAs-based quantum dots
grown on an AlxGa12xAs-based substrate@10–13#. The lat-
tice constant of AlxGa12xAs is significantly smaller than tha
of InxGa12xAs, consequently the portion of InxGa12xAs
grown on the substrate has stress, the degree of which
creases as the size of the quantum dot increases. There
these quantum dots can only grow as large as the cri
size, which is dependent on the ratio of the two lattice c
stants. The density of quantum dots may be limited for
same reason, so quantum dots are self-assembled in a
strate, as other nanostructures are self-assembled to form
terns @14–16#. The use of coupled quantum dots is bei
investigated for application to future electronic devices@17–
20#. There are several systems in which patterns are s
organized. Dynamic patterns associated with turbulence h
attracted much attention@21–23# and self-organized pattern
in chemical solutions have been much discussed@24,25#.
Self-organized patterns have been analyzed based on
Ginzburg-Landau equation@26,27# and nonlinear dynamica
equations@28–31#. Dendritic patterns, e.g., generated
diffusion-limited aggregation@32# and dielectric breakdown
@33#, have been discussed in the context of fractal geom
@34–39#. A multiply-twisted helix may be realized in a sel
organized helical structure, as in proteins@40–43#.

Let us turn to biological systems, e.g., the cerebral cor
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in which complex connections between neurons are achie
‘‘automatically.’’ Only an overall structure of these conne
tions is written in the genes. The growth of axons and d
drites is driven by a dissipative structure in the brain, con
quently many synaptic connections are randomly crea
Nonfunctional connections are destroyed, eliminating a la
proportion of the original connections and resulting in a fu
grown brain @44#. In the primary visual cortex, there ar
many modules, each of which corresponds to a certain reg
of the retina. An orientation-sensitive neuron in the mod
will become active only when a line in a particular orient
tion appears within its receptive field@45–47#. The distribu-
tion of orientation-sensitive neurons has been analyzed in
context of self-organization@48,49#. When neurons have
been distributed on a silicon surface, dendrites or axons g
on the silicon surface, resulting in a self-organized netw
of neurons@50–55#.

We believe that self-organizing phenomena have poten
applications, for example, to electronics, where large-sc
integration of component devices, e.g., semiconductor-ba
devices, has become increasingly difficult as the scope
integration increases. We have proposed a dissipative
namics in which interacting objects grow, which can be a
plied to construct complex connections between compon
devices@56#. These interacting objects, each of which tak
on the appearance of a fractal, are connected with each o
to form a so-called coupled-fractal network, which is simil
to a neuronal network. The growth rate of each componen
proportional to the probability that a source material reac
grown objects from faraway, as in the dielectric-breakdo
model@33#. The growth rate of thekth component is propor-
tional to the probability that an adhesive reaches thekth
component from other components. Thus, growth probab
is the product of these two probabilities—a component c
grow only when a source and an adhesive coexist near
component. The complex structure of the coupled-fractal n
work is strongly dependent on these two probabilities.

This paper extends the previous results and pres
growth simulations of various networks, in which the stat
tical interaction between fractal-shaped components is
portant.
©2001 The American Physical Society03-1
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II. GROWTH MODEL

A. Review of the dielectric-breakdown model

Let us review the dielectric-breakdown model that p
vides a single fractal-shaped structure. We introduce t
dimensional square latticeS, which contains lattice sitesr
5( i 1 ,i 2)PS. We define scalar potential fieldf(r ) in S,
which obeys the Laplace equation:

Df~r !50. ~1!

A fractal-shaped structure is defined as a set of lattice s
denoted byTn , wheren50,1,2,... .T0 contains a single lat-
tice siter (0). Tn11 is a set of lattice sites to which a sing
lattice site is added toTn , as discussed below.

Let f(r )51 whenr belongs toTn . On the other hand, le
f(r )50 whenur u approaches infinity. Under these bounda
conditions, equation~1! can be solved.

The lattice site that will be added toTn in order to con-
structTn11 is selected from the set of lattice sites, i.e.,Un ,
whose elements are nearest to the lattice sites inTn . The
number of lattice sites inUn is denoted byNn . We define the
strength of the ‘‘electric field’’ for lattice sitesrm in Un as

Em~a!5$f~rm!21%a. ~2!

Now we select the lattice site that will be added toTn ac-
cording to the probability

Pm~a!5
Em~a!

( j 51
Nn Ej~a!

. ~3!

This process yields a series ofTn , each of which gives us a
fractal-shaped structure.

Recall the diffusion-limited aggregation. Here, a sou
material attaches to a grown object only when the sou
material reaches the object. The Laplace equation is the s
as the diffusion equation when there is no time depende
Therefore, the strength of the ‘‘electric field’’ is proportion
to the amount of source material that will possibly attach
grown objects. Therefore, a grown object described by
dielectric-breakdown model whena51 is the same as tha
described by diffusion-limited aggregation.

B. Generating coupled-fractal networks

Extending the above scheme for an isolated fractal-sha
structure, we introduce a growth model of coupled-frac
networks. The above scheme is extended to include sev
species of components. The number of species is denote
Nc . Along with scalar potential fieldf(r ) in S, we introduce
a scalar potential field for each componentc (1)(r ),
c (2)(r ),...,c (Nc)(r ), which obeys the Laplace equation

Df~r !50, ~4!

Dc~1!~r !50, ~5!

Dc~2!~r !50, ~6!
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Dc~Nc!~r !50. ~7!

A coupled-fractal network is defined as a set of lattice sit
denoted byTnPS, which consists ofNc species, i.e.,

Tn5 ø
k51

Nc

Qn
~k! ~8!

so

Qn
~ j !ùQn

~k!5B if j Þk, ~9!

whereQn
(k) represents thekth component of ourNc species.

Q0
(k) contains single lattice siteR0

(k) and Tn11 is a set of
lattice sites in which a single lattice site is added toTn , as
discussed below.

We take the boundary conditions

f~r !5 H0 when ur u→`
1 when rPTn

~10!

for f(r ) and the boundary conditions

c~k!~r !5H Ck when ur u→`

1 when rPQn
~k!

21 when rPQn
~ l !~kÞ l !

~11!

for c (k)(r ) of eachk, whereCk is a parameter. Under thes
boundary conditions, Eqs.~4!–~7! can be solved.

The lattice site that will be added toTn in order to con-
struct Tn11 is selected from the sets of lattice sites, i.
Un

(k) , whose elements are nearest to the lattice sites inQn
(k) .

The number of lattice sites inUn
(k) is denoted byNn

(k) . The
lattice site that will be added toTn in order to constructTn11
is selected from the set of lattice sites

Un5 ø
k51

Nc

Un
~k! , ~12!

where the number of candidates is

Nn5 (
k51

Nc

Nn
~k! . ~13!

Note that there may exist a site that is nearest to both
lattice sites inQn

( j ) and those inQn
(k) .

We define the strength of the electric field for lattice sit
rm

(k) (m51,2,...,Nn
(k)), in Un

(k) as

Ein
~k!~a,b!5uf~rm

~k!!21uauc~k!~rm
~k!!21ub. ~14!

Now we select the lattice site that will be added toTn ac-
cording to the probability

Pm
~k!~a,b!5

1

D
Em

~k!~a,b!, ~15!
3-2
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FIG. 1. ~Color! Growth sequence of the three-component network with (a,b)5(0.5,1) on a 102431024 lattice when the number o
grown sites is~a! n510 000,~b! n520 000,~c! n530 000, and~d! n540 000.
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where

D5 (
k51

Nc

(
j 51

Nn
~k!

Ej
~k!~ga,b!. ~16!

Once rm
(k) is selected, the site is added toQn11

(k) , so Qn11
( j )

( j Þk) remains the same asQn
( j ) . This process yields a serie

of Tn , each of which gives us a coupled-fractal network.
The scalar fieldf(r ) presents the probability that a sour

material reaches grown objects from faraway. This is as
the original dielectric-breakdown model where the grow
rate is proportional to the strength of the electric field. The
03110
in

-

fore, uf(rm
(k))21ua is proportional to the amount of sourc

material that may possibly reach grown objects. In t
dielectric-breakdown model, the fractal dimension can
controlled by controllinga, as introduced in our model.

On the other hand, the scalar fieldc (k)(r ) presents the
probability that an adhesive reaches thekth component from
other components. This probability is proportional
uc (k)(rm

(k))21ub, where parameterb is introduced. The
growth rate may depend on how long the source material
adhesives can stay near the surface of grown objects. T
our hypothesis of growth probability is the product of the
two probabilities—a component can grow only when
source and an adhesive coexist near the component.
3-3
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RYUICHI UGAJIN PHYSICAL REVIEW E 64 031103
that an adhesive from thekth component cannot only reac
near components but also be propagated faraway. There
the rate of losing adhesives can be controlled by control
the parameterCk .

III. NETWORK GROWTH SIMULATION

A. Typical coupled-fractal networks

Our model requires several parameters to be given.
size of the square lattices is not important if it is lar
enough. Though there is no length scale in the dielect
breakdown model, our model has a length parameter
determines the distance between fractal-shaped struct
Note that the length parameter does not influence the sh
of the structure, which depends on the parameters~a, b!. The
effect of changing~a, b! will be discussed in Sec. III B. Le
us note thatCk may affect the shape of grown objects. Th
will be discussed in Sec. III C. Here we show a typic
coupled-fractal network witha50.5, b51, and Ck50,
which takes on the appearance of a neuronal network. N
that in this section growth simulations are performed on
square lattice of 102431024.

Figure 1 shows the growth sequence of the thr
component networkNc53, where three initial pointsR0

(1)

5(409,409); R0
(2)5(615,409); andR0

(3)5(512,615) are
given. Note that the component shown by the red point
Qn

(1) , the component shown by the light-blue points isQn
(2) ,

and the component shown by the yellow points isQn
(3) .

When n510 000, these three components are disconne
to yield individual fractal-shaped structures, as shown in F
1~a!. Whenn520 000, connections are formed betweenQn

(1)

and Qn
(2) and betweenQn

(1) and Qn
(3) , but Qn

(2) and Qn
(3)

remain disconnected, as shown in Fig. 1~b!. When n
530 000, we see that the three components become
nected, forming a network. Figure 1~d! shows a three-
component network whenn540 000, in which multiple con-
nections are created among the three components.

Figure 2~a! shows four-component networkNc54 when
n530 000, where four initial pointsR0

(1)5(409,409),R0
(2)

5(615,409), R0
(3)5(409,615), andR0

(4)5(615,615) are
given. The first componentQn

(1) is shown by the red points
the second componentQn

(2) is shown by the light-blue points
the third componentQn

(3) is shown by the yellow points, an
the fourth componentQn

(4) is shown by the purple points
The first component is connected to the second compo
and the third component, but not to the fourth compone
On the other hand, the second component is connected t
fourth component, just as it is to the first component. T
connections among these components resemble the syn
connections among neurons in a neuronal network.

Figure 2~b! shows a five-component networkNc55 when
n540 000, where five initial pointsR0

(1)5(358,358), R0
(2)

5(666,358), R0
(3)5(358,666), R0

(4)5(666,666), andR0
(5)

5(512,512) are given. The fifth componentQn
(5) is shown

by the white points, while the other components are sho
using the same colors as in Fig. 2~a!. The fifth component,
shown by the white points in the figure, grows to the left b
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not to the right. Note thatQn
(2) shown by the light-blue points

is connected toQn
(4) shown by the purple points. On th

other hand,Qn
(1) shown by the red points is not connected

Qn
(3) shown by the yellow points. Recall that the growth ra

is a product of the probability of receiving source materi
from faraway and the probability of receiving adhesiv
from other grown objects. If source materials never reach
grown objects, there is no possibility that the network w
grow. Because a connection betweenQn

(2) andQn
(4) has been

made in an early stage of the growth sequence, source
terials cannot reach the fifth componentQn

(5) from the right-

FIG. 2. ~Color! ~a! Four-component network whenn530 000
and ~b! five-component network whenn540 000 with (a,b)
5(0.5,1) on a 102431024 lattice.
3-4
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FIG. 3. ~Color! Three-component networks with various~a, b! on a 5123512 lattice whenn510 000.~a, b! are taken to be~a! ~0.4, 1!,
~b! ~0.5, 1!, and~c! ~0.6, 1!.
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hand side. On the other hand, the fifth component can g
toward the left-hand side because source materials can r
from that direction. As is seen in Fig. 2~b!, an arm of the fifth
component stretches through the space betweenQn

(1) and
Qn

(3) .

B. The effect of changinga and b

As noted previously, the shape of grown objects, i
coupled-fractal networks, is strongly dependent on the
rameters~a, b!. Becausea determines how a source materi
from faraway reaches the surface of grown objects,a affects
the entire network structure. On the other hand,b determines
03110
w
ch

.,
a-

how an adhesive from other components attaches to the
face of grown objects, sob influences the relation betwee
components. Now let us examine howa and b affect the
shape of coupled-fractal networks. Note that growth simu
tions in this and the rest of Sec. III are performed on a squ
lattice of 5123512.

Figure 3 shows the effect of changinga on the three-
component network, whereb51. Three initial pointsR0

(1)

5(204,204), R0
(2)5(308,204), andR0

(3)5(256,308) are
given andn510 000 sites are grown. Figure 3~b! shows the
three-component network witha50.5, the shape of which is
similar to that in Fig. 1. As compared to the above examp
i.e., a coupled-fractal network with (a,b)5(0.5,1), let us
3-5
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FIG. 4. ~Color! Three-component networks with various~a, b! on a 5123512 lattice whenn510 000.~a, b! are taken to be~a! ~0.6,
1.2!, ~b! ~0.6, 0.8!, and~c! ~0.4, 0.8!.
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consider the three-component network witha50.4 in Fig.
3~a! and the three-component network witha50.6 in Fig.
3~c!. Whena is small, the structure of the networks is den
as is seen in Fig. 3~a!. On the other hand, whena is large,
each component grows toward the outside, as is seen in
3~c!. Recall that when an isolated fractal is grown, the frac
dimension decreases asa increases. Whena is almost zero,
a condensed ball is obtained. This is consistent with the
dency of the entire structure of coupled-fractal networks.

When b changes, the relation between compone
changes. Figure 4 shows the effect of changingb on the
three-component network. Conditions except the values
~a, b! are the same as those in Fig. 3. The three-compo
03110
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network with (a,b)5(0.6,1.2) is shown in Fig. 4~a!. As
compared to Fig. 3~c!, whenb51 components strongly in
teract with each other, growing toward each other. On
other hand, in Fig. 4~b! when b50.8, connections betwee
components are weak and the interaction between com
nents is repulsive. In Fig. 4~c!, we show a three-componen
network with (a,b)5(0.4,0.8), in whicha is smaller than
that in Fig. 4~b!. The poor quality of connections is same
in Fig. 4~b! though the small value ofa makes the entire
structure denser. Let us sum up the effects of changinga and
b. As a increases, the entire structure becomes more
tended. Conversely, asa decreases the structure becom
denser. Asb increases, the components move closer, i
3-6
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FIG. 5. ~Color! Three-component networks with (a,b)5(0.5,1) on a 5123512 lattice whenn510 000.Ck is taken to be~a! 20.2, ~b!
20.6, and~c! 21.
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there is an attractive force between fractal-shaped com
nents.

C. The effect ofCkÅ0

In this section we consider the parameterCk , which de-
termines the boundary value ofc (k)(r ). Recall thatc (k)(r )
takes 1 whenr is one of the grown sites of thekth compo-
nent, i.e.,Qn

(k) , and thatc (k)(r ) takes21 whenr is one of
the grown sites other than the sites of thekth component.
The slope describing the difference between ‘‘1’’ and ‘‘21’’
drives the diffusion of adhesives from wherec (k)(r ) takes
21 to wherec (k)(r ) takes 1.Ck , which is between21 and
1, determines what amount of adhesives will propagate
03110
o-

r-

away because the slope describing the difference betweeCk
and 21 drives the diffusion of adhesives from the grow
sites other than the sites of thekth component to faraway
Note that the slope describing the difference between 1
Ck drives the diffusion of adhesives from faraway to thekth
component in the present model.

Figure 5 shows the three-component network w
(a,b)5(0.5,1), whereCk is taken to be20.2 in Fig. 5~a!,
20.6 in Fig. 5~b!, and21 in Fig. 5~c!. Figure 6 shows the
three-component network with (a,b)5(0.5,1), whereCk is
taken to be 0.2 in Fig. 6~a!, 0.6 in Fig. 6~b!, and 1 in Fig.
6~c!. Note that the initial points are the same as those in F
3, where growth simulations are performed on a square
tice of 5123512. As Ck decreases from zero, the couple
3-7



RYUICHI UGAJIN PHYSICAL REVIEW E 64 031103
FIG. 6. ~Color! Three-component networks with (a,b)5(0.5,1) on a 5123512 lattice whenn510 000.Ck is taken to be~a! 0.2,~b! 0.6,
and ~c! 1.
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fractal networks become extended and the degree of
pling becomes less, as is seen in Fig. 5. This is because m
adhesives come from faraway whenCk has a negative value
just as the source material comes from faraway. Theref
each component grows independently and extends to
away. As the value ofCk approaches21, a repulsive force
between components becomes apparent. On the other h
asCk increases from zero, the coupled-fractal networks
come denser and the degree of coupling becomes more
nounced, as is seen in Fig. 6. AsCk increases up to 1
c (k)(r ) when ur u→` approachesc (k)(r ) when rPQn

(k) , so
there is no possibility of receiving adhesives from faraw
03110
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Thus, all components grow toward each other, resulting i
dense coupled-fractal network.

IV. STATISTICAL INTERACTION BETWEEN
FRACTAL-SHAPED COMPONENTS

A. Correlation between components

We have considered a variety of networks and noted
interaction between fractal-shaped components. Howeve
only a single grown network is available there is no way
determine whether this network has been influenced by s
kind of interaction between fractal-shaped components
3-8
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not. We can determine the effect of interaction betwe
fractal-shaped components if we extract the universal fea
of the interaction by investigating an ensemble of gro
networks. When a growth sequence is referred to as havi
‘‘classical trajectory’’ in dynamics, an ensemble average
grown samples, as in the functional integral of statisti
field theories@57#, possibly enables us to define ‘‘statistic
interaction’’ between fractal-shaped components@58–60#.

Let us consider a series of growth simulations ofNc52
coupled-fractal networks usingM sequences of random num
bers. When a coupled-fractal network is grown using apth
sequence of random numbers, the network is denoted
Tn(p) such that

Tn~p!5 ø
k51

Nc

Qn
~k!~p!. ~17!

Let the number of elements inQn
(k)(p) be denoted by

Mn,k,p . The center of mass of thekth species in thepth
sample is

wn
~k!~p!5

1

Mn,k,p
(

rPQn
~k!

~p!

r ~18!

so we introduce

wn
~k!5

1

M (
p51

M

wn
~k!~p!, ~19!

which is the average of the center of mass for thekth species.
The mean distance between the centers of thekth and thel th
components is

Dn
~k,l !5uwn

~k!2wn
~ l !u. ~20!

It is useful to introduce a correlation function betweenkth
and l th components

Gn
~k,l !5

1

M (
p51

M

xn
~k!~p!•xn

~ l !~p!, ~21!

where

xn
~k!~p!5

1

Mn,k,p
(

rPQn
~k!

~p!

~r2wn
~k!!. ~22!

The degree of correlation between thekth and thel th com-
ponents

xn
~k,l !5

Gn
~k,l !

AGn
~k,k!Gn

~ l ,l !
~23!

will be evaluated to determine how the statistical interact
proceeds.

Let us consider the physical interpretation of the abo
quantityxn

(1,2) whenNc52. The center of thekth component
wn

(k) is averaged over the whole ensemble. When we conc
trate on thepth sample out of the whole ensemble, the cen
03110
n
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f
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n

e

n-
r

of the kth component may be different fromwn
(k) , resulting

in deviationxn
(k)(p). Because the correlation functionGn

(1,2)

is measured by the inner product of the deviation of the fi
component and the deviation of the second componen
takes a positive value when the deviation of the first com
nent has almost the same direction as the deviation of
second component. On the other hand,Gn

(1,2) takes a negative
value when the directions are opposite. The degree of co
lation xn

(1,2) is dimensionless becauseGn
(k,k) is the square of

the deviation of thekth component. If a deviation from the
average, i.e.,xn

(k)(p), is thought of as a movement of thekth
component, in an analogy with dynamical systems,xn

(1,2)

takes a positive value when the first component moves to
left and the second component moves also to the left,
example.

B. Numerical evaluation of an ensemble

We have performed a series of growth simulations ofNc
52 coupled-fractal networks usingM5500 sequences o
random numbers on 2013201 square lattices, whereCk50
is taken. The first component is initiated fromr0

(1)

5(185,100) and the second component is initiated fr
r0

(2)5(217,100). Four samples of the coupled-fractal n
works Tn(p)(p51,2,3,4) withn5800 are shown in Fig. 7
when (a,b)5(0.6,0.8). Note that only 1413141 square lat-
tices out of the 2013201 square lattices are shown in Fig.
Although we find differences between these four samp
due to different random sequences during growth, we
recognize the universal feature characterized by~a, b!.

To measure the correlation between fractal-shaped c
ponents we evaluated

D~n!5Dn
~1,2! ~24!

FIG. 7. ~Color! four samples of a two-component couple
fractal networkT800(p) when (a,b)5(0.4,0.6).
3-9
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and

x~n!5xn
~1,2! ~25!

over M5500 samples of theNc52 network. Let us show
D(n) in Fig. 8 andx(n) in Fig. 9 with variousa when ~a!
b50.6, ~b! b50.8, and~c! b51 in Figs. 8 and 9. As the
network grows, i.e., asn increases,D(n) decreases whena
is small enough, suggesting the existence of an attrac
force. On the other hand, whena is large enough,D(n)
increases asn increases. When this happens, each compon
grows toward the outside, so there may be a repulsive fo
As b increases, the value ofD(n) becomes smaller ifa is
small enough, again suggesting the existence of an attra
force.

Let us turn tox(n) in Fig. 9, which measures the degre
of correlation between fractal-shaped components. Whenn is
small on the order of 10,x(n) is almost zero or less tha
zero, showing that each component grows independe

FIG. 8. The mean distance between the centers of fractal-sh
components of aNc52 network with variousa when ~a! b50.6,
~b! b50.8, and~c! b51.
03110
ve

nt
e.

ive

ly.

When n is between 100 and 200,x(n) keeps a positive
value, which depends ona, showing the existence of a
attractive force. In this region of the growth sequen
fractal-shaped components are still separated, but they in
act attractively. Whenn becomes larger than 200,x(n) be-
comes dependent ona. Whena is large,x(n) decreases asn
increases. Becausex(n) is sufficiently small or takes a nega
tive value, the network grows accompanied by a repuls
force. On the other hand,x(n) increases asn increases,
when a is small. Becausex(n) grows rapidly, the network
becomes condensed. Whena/b is close to 0.5,x(n) remains
a small value on the order of 0.2 and is almost independ
of n, where the network grows with a weak but stable attr
tive force. These networks take on the appearance of neu
on a silicon surface@50–55#.

V. DISCUSSION AND SUMMARY

Everything we have discussed so far is caused by
interplay between the entire structure of grown objects a

ed FIG. 9. The degree of correlation between fractal-shaped c
ponents of aNc52 network with variousa when ~a! b50.6, ~b!
b50.8, and~c! b51.
3-10
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the interaction between components. Let us comp
coupled-fractal networks with interacting electrons in
quantum dot@61–66#. Because electrons interact in a confi
ing potential, there are two major parameters, one of wh
is the strength of the confining potential, and the other is
strength of electron-electron interaction. In our grow
model of coupled-fractal networks,a controls the entire
structure, so there is an analogy with the confining poten
of quantum dots. On the other hand,b controls the relation
between components, so there is an analogy with elect
electron interaction. The number of speciesNc is analogous
to the number of electrons in a quantum dot. As the quan
states of multiple electrons in a quantum dot are contro
by controlling these two parameters, various networks of
teracting fractal-shaped objects are created when the m
parameters are changed.

The growth of dendrites of a neuron may not be ac
rately described by the diffusion-limited mechanism
source materials@67#. Although the growth of actual neu
ronal networks is different from the growth represented
our model, there is a physical system in which complex c
nections can be self-organized as described by our mode
realized, component devices, e.g., consisting of coup
quantum dots, can be wired using the dynamics of organi
inorganic source materials—a self-organized phenomeno

We have performed growth simulations of coupled-frac
networks, which have been proposed in order to prod
self-organized patterns of interacting objects. The mode
based on a hypothesis in which the growth rate of each
ject is a product of the probability of receiving source ma
rials from faraway, i.e.,uf(rm

(k))21ua, and the probability of
v.

ev

et

ar

a,
mi

s
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receiving adhesives from other grown objects, i.
uc (k)(rm

(k))21ub. Therefore,a controls the entire structure o
coupled-fractal networks andb controls the relation betwee
components. There is still another parameter,Ck , which de-
termines the boundary value ofc (k)(r ). When a50.5, b
51, and Ck50, the coupled-fractal network takes on th
appearance of a neuronal network, in which ‘‘synaptic’’ co
nections are randomly distributed. Asa increases, the entire
structure of coupled-fractal networks becomes more
tended. Conversely, asa decreases, it becomes denser. Asb
increases, the relation between components becomes c
i.e., an ‘‘attractive force’’ between components seems to
pear. Conversely, asb decreases, a ‘‘repulsive force’’ be
tween components seems to appear.Ck also controls the in-
teraction between components.

This interaction, which can only be identified in a stat
tical manner over ensembles, was investigated using the
gree of correlation between these fractal-shaped compon
The degree of correlation between fractal-shaped com
nents, averaged over the ensemble ofM5500 samples, de-
termined whether the interaction is attractive or repulsi
When model parameters are appropriate, the network ta
on the appearance of a neuronal network is characterize
the degree of correlation remaining almost the same ov
wide range of growth.
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